1,641 research outputs found

    Diquark mass differences from unquenched lattice QCD

    Get PDF
    We calculate diquark correlation functions in the Landau gauge on the lattice using overlap valence quarks and 2+1-flavor domain wall fermion configurations. Quark masses are extracted from the scalar part of quark propagators in the Landau gauge. Scalar diquark quark mass difference and axial vector scalar diquark mass difference are obtained for diquarks composed of two light quarks and of a strange and a light quark. Light sea quark mass dependence of the results is examined. Two lattice spacings are used to check the discretization effects. The coarse and fine lattices are of sizes 243×6424^3\times64 and 323×6432^3\times64 with inverse spacings 1/a=1.75(4) GeV1/a=1.75(4) {\rm~GeV} and 2.33(5) GeV2.33(5) {\rm~GeV}, respectively.Comment: 9 figure

    Mitigation mechanism of longitudinal ribs on rain-wind induced vibrations of stay cables

    Get PDF
    For cable stayed bridges rain-wind induced vibrations of stay cables are probably the most widespread and controversial phenomenon. Aerodynamic countermeasures have been implemented to tackle such vibrations, but there is still not sufficient insight on the inherent mitigation mechanisms. To this goal, a numerical model, based on lubrication theory, was employed in order to study the coupled cable vibration response, aerodynamic forces, and formation and oscillation of rivulets for stay cables equipped with longitudinal ribs. Coupled equations governing the synchronous cable motion and water film evolution were established in order to understand the effects of several key parameters associated with the vibration mitigation performance of the ribs. Such parameters include the cable inclination angle, the wind yaw angle, the number and the height of the ribs. Computed results were successfully validated against experimental data. For the various studied cases, it was apparent that the ribs did not stop the formation of rivulets, but they could affect both their position and oscillation ranges. Through such a control action they could further affect the oscillation range and frequency content of aerodynamic forces, mitigating or not cable vibrations

    Nearby SNR: a possible common origin to multi-messenger anomalies in spectra, ratios and anisotropy of cosmic rays

    Full text link
    The multi-messenger anomalies, including spectral hardening or excess for nuclei, leptons, ratios of pˉ/p\bar p/p and B/C, and anisotropic reversal, were observed in past years. AMS-02 experiment also revealed different spectral break for positron and electron at 284 GeV and beyond TeV respectively. It is natural to ask whether all those anomalies originate from one unified physical scenario. In this work, the spatially-dependent propagation (SDP) with a nearby SNR source is adopted to reproduce above mentioned anomalies. There possibly exists dense molecular cloud(DMC) around SNRs and the secondary particles can be produced by pp-collision or fragmentation between the accelerated primary cosmic rays and DMC. As a result, the spectral hardening for primary, secondary particles and ratios of B/CB/C and pˉ/p\bar p/p can be well reproduced. Due to the energy loss at source age of 330 kyrs, the characteristic spectral break-off for primary electron is at about 1 TeV hinted from the measurements. The secondary positron and electron from charged pion take up 5%5\% energy from their mother particles, so the positron spectrum has a cut-off at ∼\sim250 GeV. Therefore, the different spectral break for positron and electron together with other anomalies can be fulfilled in this unified physical scenario. More interesting is that we also obtain the featured structures as spectral break-off at 5 TV for secondary particles of Li, Be, B, which can be served to verify our model. We hope that those tagged structures can be observed by the new generation of space-borne experiment HERD in future.Comment: 16 pages, 12 figure

    State-of-the-art review of 3DPV technology: structures and models

    Get PDF
    © 2019 Elsevier Ltd Increasing energy conversion efficiency from sunlight to power is one of the key solutions for the world's energy shortage and greenhouse gas reduction, but the conventional flat photovoltaic module without sun tracking mechanism has the low sunlight energy collection ability. This paper presents the state-of-the-art three-dimensional photovoltaic (3DPV) technology with high photovoltaic energy conversion efficiency, which is able to absorb off-peak sunlight and reflected light more effectively, thereby it can generate more power. At first, this paper is to catalogue and critique different 3DPV structures and models, as well as assess their characteristics. Afterwards, the main influence factors on the 3DPV structures and models including shape, height and spacing of the solar cells, latitude of the installation, optimal device design and shadow cast, are reviewed. Finally, the challenges and future technological developments of 3DPV structures and models are highlighted. This study demonstrated that the 3DPV technology can increase the captured sunlight approximately 15–30% in comparison with the conventional flat PV technology
    • …
    corecore